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Abstract In this paper two important factors — the subgrid model length scale and lateral
resolution — ave investigated for the large-eddy simulation (LES) of high Reynolds number
turbulent channel flow using resolutions that are insufficient to fully resolve the buffer layer. It is
found that the use of standard damping functions will not reproduce correct mean velocity
profiles and that good LES results will only be obtained by adjustment of the subgrid model length
scales. To also obtain accurate turbulence statistics then special attention has to be given to the
lateral resolution.

1. Introduction

In recent years, the use of LES for solving turbulent flows has gained
popularity. The justification of LES approach comes from the fact that most
problems of practical engineering interest are at high Reynolds numbers,
however, even the most powerful computers available today are only feasible
for direct simulation of turbulent flows at low or moderate Reynolds numbers.
Therefore, for engineering problems with high Reynolds numbers, the large-
eddy simulation is an important technique for simulation of turbulent flows.
Previous research has revealed that the large scale turbulent eddies contain
most of the energy, perform most of the turbulent transport, hence dominate
the main properties of the turbulent flows. In LES, the temporal evolution of
these dominating large scale eddies is explicitly and correctly resolved
numerically and only the small scale eddies, which are more isotropic, random
and have indirect influence to the large scale motions, are taken into account by
a subgrid scale model (SGM).

Obviously, the success of the LES approach is affected by the performance
of the subgrid model, i.e. how much kinetic energy from the resolved large-scale
1s dissipated by the SGM model. For decades there have been intensive efforts
towards developing and investigating subgrid models. The most commonly
accepted model today is the Smagorinsky model (Smagorinsky, 1963) which
parameterizes an eddy viscosity. However, the formulation of the eddy
viscosity involves an unknown subgrid length scale which has to be
determined empirically. The Smagorinsky length scale, L = C,A, is a function
of the mesh scale A and a value of a coefficient C;. Germano ef al. (1991), and
more recently Ghosal et al. (1992; 1994) have developed a method to determine
Cs dynamically during the simulation by measuring the energy transfer rates



close to the wavenumber cutoff. This is important in the simulation of Coarse resolution

inhomogeneous flows where C; may vary with location. However, in
homogeneous turbulent flows the variation of C; is less important and
reasonable results may be obtained with a fixed value of C; for a given mesh
scale. For channel flows, Deardorff (1970) suggested that C; = 0.1 is the
optimum magnitude.

It is well known that as the wall is approached the subgrid length scale has
to be decreased in order to match Prandtl’s mixing length function. Because
most turbulent energy is generated in the near wall region, a matching function
which links the Smagorinsky and Prandtl mixing length plays a key and
sensitive role in a simulation since an incorrect matching function in the near
wall and buffer regions will result in either damping out too much of the large-
scale motions or producing excessive amounts of the subgrid-scale motions.

It is common knowledge that near the wall region a good vertical resolution
1s needed in order to capture the features of turbulent flow. In our study,
however, we found that the lateral resolution is also very important for good
results since the bursting phenomenon or streaky structure near the wall
requires to be sufficiently resolved. A good coarse resolution LES result is
determined, therefore, not only by a good subgrid model but also by resolving
the low speed streaks.

In this paper we investigated the influence of the two factors: length scale
and lateral resolution. Our study shows that for open channel flows at
relatively high Reynolds number, the matching function using the standard
van Driest damping factor (Thomas and Williams, 1995) will not give
satisfactory results, whereas the Mason and Thomson’s power matching
function (Mason and Thomson, 1992) with correctly chosen powers can give
reasonably good results for varying mesh scales as long as the lateral spacing
scale y* is less than about 20. Also, the use of Schumann’s (1975) split SGM
with suitably chosen coefficients can also give correct mean velocity profiles.

The paper is organized as follows: section 2 briefly describes the governing
equations and subgrid model used. Section 3 gives the numerical method and
boundary conditions. Section 4 discusses the length scale and matching
functions. Section 5 presents the numerical results and discussions. Section 6 is
the conclusions.

2. Governing equations

The basic equations in large-eddy simulations are the usual volume averaged
Navier-Stokes equations enhanced by an additional subgrid stress. For
incompressible fluids they take the following form:

8%2' .
=0 ()
Ou; | Oty) 9 | Oy o 2)

E 6xj 8}@' axj

large-eddy
simulation

21




HFF
11,1

22

where (u1,u2,u3) = (u,v,w) are the resolved velocity components in the
(x1,%42,43) = (x,¥,2) representing streamwise, spanwise and vertical
directions, respectively, p is the pressure, g; is a source term and 7; is a stress
tensor which is a combination of a normal viscous stress and a subgrid stress
parametrized by a subgrid scale model (SGM). Although a free-surface code has
been used for the simulations reported here the free-surface itself will have
negligible effect on the results.

The time evolution of the elevation of the free surface, & = f(x,,1), is
governed by a kinematic equation modeling the surface as it moves with the
fluid. In vector form it gives:
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here u = (u,v, w) is the velocity vector,
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1s the surface unit normal vector and
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3. Computational method

We consider the turbulent flow of an incompressible fluid flowing down an
infinitely wide open channel. The free surface is allowed to deform arbitrarily
and is subject only to a maximum slope limit (Thomas and Williams, 1994)
such that
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which allows a much simplified surface locator. The two characteristic lengths
for this flow are the depth d and the viscous length v/« where . denotes the
characteristic shear velocity (agd)l/ 2« is the bed slope and g is the
acceleration due to gravity. With «, and d set to unity we chose « to be equal
1/1,000 and, consequently, g to be 1,000. The ratio «,d /v is denoted Re™ and
is also set equal to 1,000 whereas the ratio us/+/gd is the Froude number F, in
which u; is the mean surface velocity and is determined by the simulation.
With u, approximately equal to 22.0 F, becomes 0.7 and the Reynolds number
based on the mean surface velocity usd /v is approximately 22,000.

The time dependent incompressible Navier-Stokes equations with boundary
conditions of a solid bed and a free surface are solved numerically until a
statistically steady state has been reached. By averaging of the instantaneous
flow field the mean flow field is obtained and, consequently, the fluctuating



values can be attained by subtracting the two fields. Finally, turbulent Coarse resolution

statistics can be calculated such as root-mean-square values (rms) and
Reynolds-stresses.

3.1 Numerical discretization

The discrete form of the equations (1) and (2) used in our large-eddy
simulations are obtained by a second-order central difference method applied to
a staggered grid. The time advancement is by the second-order Adams-
Bashforth method. If we denote the quantity
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where 7 is the discrete time level and 6 is the finite difference operator, the
solution is advanced over a time step using the equations
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where #; is an intermediate resolved velocity, At the time step, and D? the
discrete Laplace operator.

Note that the continuity equation (1) is replaced by the Poisson equation (11).
In this approach, first #; is computed using (9), and continuity at time level
n + 1 is enforced by solving the Poisson equation (11) for the pressure, then the
u?“ velocity is computed by solving equation (10), finally the new surface
elevation /! is updated by implicit iteration of equation (12).

3.2 Subgrid model
In the present study we use the Smagorinsky model which is the most
commonly used SGM. The stress tensor 7;; is then defined as

i = 2(v + v5)S; (13)
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where v denotes the kinematic viscosity and v is the eddy viscosity, given by

v = [2(25;S) (14)

B 1 a%l' 8%]'
S-3(5+5) (15)

where L is the length scale which will be discussed in section 4.

and

3.3 Boundary conditions

In this study periodic boundary conditions are used in the streamwise and
lateral directions and a Schumann boundary condition (Schumann, 1975) is
applied on the bed of the channel for the stress boundary condition. The
Schumann boundary condition assumes that the instantaneous wall shear
stress 7 varies in phase with the instantaneous velocity components tangential
to the bed such that 7=u <7 >/ <u > for the streamwise direction,
likewise the spanwise direction. The < - > denotes the averaged value. The
ratio between < 7 > and < # > can be determined from the law-of-the-wall
which is the universally accepted velocity profile.

On the surface of the flow, the external boundary conditions imposed are
zero pressure and tangential shear stress. The surface is freely deformable. The
method of dealing with these is described in Thomas and Williams (1994) and
Thomas et al. (1995) and their adopted procedures enable the free surface and
any wave motion to be modelled accurately.

The previous discretized equations with the boundary conditions described
above are solved by a LES code (Thomas et al., 1995; Thomas and Williams,
1995) developed at Queen Mary and Westfield College, London University.
This code can, therefore, be used to simulate turbulent open channel flows with
freely deformable surface.

4. Problem definition
As discussed in section 3.2 the subgrid model involves a length scale L. Near
the wall the small eddies are represented by a Prandtl mixing length L = Cyz™,
where Cy is von Karman’s constant, z© is the distance to the bed which is
normalized by the length v/u. and is denoted by a superscript +. In the outer
flow region the subgrid scale L is given by Deardortf (1970) and has the form
L = C;A where A = (Ax"Ay™ Az")? and C; is the Smagorinsky constant. To
match the near-wall Prandtl mixing length to the length scale in the outer
region, a matching function is required.

In our first test run the standard van Driest damping factor (Van Driest,
1956) which has the following expression:

Iz =1-exp(—z"/A) (16)



was used, thus the length scale used in the first run is

L =CATI'(z") (17)
where A = 26 is the van Driest constant.

For engineering interest we carried out our simulations at a Reynolds
number R = 1,000. The first run of our simulation begins with a box size
of 6 x 4 x 1 in streamwise, spanwise and vertical directions, respectively,
and C, =0.1 was chosen. Two resolutions, 32° and 64 grids, were
conducted.

Figures 1 and 2 show the comparison of the computed streamwise mean
velocity normalized by the wall shear velocity and the experimental LDA data
of Nezu and Rodi (1994) (hereafter denoted: NR). The solid line represents the
law of the wall profile. In the viscous sublayer (z™ < 5), the law of the wall
follows a linear distribution U™ = z*. In the outer region (z* > 30), it follows
Ut = 2.43nz" + 5.29.

From Figures 1 and 2 one can see that the van Driest damping function
cannot give satisfactory results in that the computed profiles (box line) are
much lower than the experimental data.
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Figure 1.

Comparison of mean
velocity in streamwise
direction between
computational solution
and experimental result
for box size 6 x 4 x 1
with 32 x 32 x 32 grid
using van Driest
damping factor
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Figure 2.

Comparison of mean
velocity in streamwise
direction between
computaional solution
and experimental result
for box size 6 x 4 x 1
with 64 x 64 x 64 grid
using van Driest
damping factor
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5. Length scale and matching functions
In order to see how a length scale matching function affects the numerical results
a function similar to that introduced by Mason and Thomson (1992) is used:

1 1 1
TN 18)
1 2
where:
L1 = C02+F(Z+) (19)
Ly = CA (20)

and Cy = 0.42 is the von Karman constant.

Figures 3 and 4 show, for the 323 and 643 grids respectively, equation (18) for
various values of #. It can be seen from these figures that as # increases, the
sharper the profile becomes and approaches the Deardorff length scale L, (20)
at much smaller values of zt. The van Driest damping function is equivalent to
Mason matching function with power between 1 and 2.

Figures 5 and 6 show the results which repeat the previous tests (see section
4) using matching function (18). For 323 grid case the power 7 = 1 and for 64°
grid case the power n = 0.5 (see Figure 4) were used. In Figures 5 and 6 better
agreement between the computed solution and the experiment data can be
observed. From these results it can be seen that the length scale required for a
suitable simulation is much less than that obtained by the use of either the
standard van Driest damping function or Mason’s damping function with the
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Figure 3.
Length scales for
32% grid

Figure 4.
Length scales for
64° grid
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Figure 5.

Comparison of mean
velocity in streamwise
direction between
computational solution
and experimental result
for box size 6 x 4 x 1
with 32 x 32 x 32 grid
using Mason’s function
with power 1

Figure 6.

Comparison of mean
velocity in streamwise
direction between
computational solution
and experimental result
for box size 6 x 4 x 1
with 64 x 64 x 64 grid
using Mason’s function
with power 0.5
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recommended value of 7 = 2. These results are consistent with the findings of
Moin et al. (1991) who indicated that values for C; should lie between 0.06 and
0.08 and who carried out tests of direct numerical simulation (DNS) data of
homogeneous shear flow.

6. Lateral resolution

Figures 7 and 8 show the computed turbulent rms values normalized by . for
the streamwise, spanwise and vertical directions compared to the experimental
results. These are shown for the two grids (32° and 64%) used in the last section.
It can be seen that the vertical rms agree reasonably well with the measured
data. However, large differences are evident between the numerical and
measured streamwise and lateral rms values.

The lateral resolution for the 32% and 64° grids give Ay*’s of 125 and 62.5
respectively. Both of these are considered to be too coarse to resolve the streaky
structure near the bed wall and might be the cause of the low computed rms
values. In order to test the effect of lateral resolution and to resolve the streaky
structure near the bed wall better, we reduced the box size to 6 x 0.5 x 1 with 323
grid, thus making the lateral spacing size Ay* = 15.6. Figures 9 and 10 show the
comparison of the results and it can be seen that very good results were obtained.
However, we have to point out that with this box size the flow in the upper part
of the channel is highly correlated although we do not expect the results in the
lower part to be affected. With this better resolution we are more able to resolve
low speed streaks near the bed and excellent mean and turbulent results are
produced although the box may be too narrow for outer region comparison.
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Figure 7.

Comparison of rms
between computational
solutions and
experimental results for
box size 6 x 4 x 1 with
32 x 32 x 32 grid using
Mason’s function

power 1
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Figure 8.

Comparison of rms
between computational
solutions and
experimental results for
box size 6 x 4 x 1 with
64 x 64 x 64 grid using
Mason’s function

power 0.5

Figure 9.

Comparison of mean
velocity in streamwise
direction between
computational solution
and experimental result
for box size 6 x 0.5 x 1
with 32 x 32 x 32 grid
using Mason’s function
with power 1
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7. Split subgrid model
Simulations were also carried out using Schumann’s (1975) split SGM:
T = —2vp(Sj— < S >) — 2vp < S > (21)
where v 1s the homogenous contribution to the eddy viscosity defined as:
2 1
vr = (CFA) [2(5‘,‘]‘— < Sl‘j >)(Sij_ < Sz'j >)]2 (22)

and the anisotropic contribution is defined according to Moin and Kim (1982)
as:

Vi = C (A2 < S5 >< S > )b (23)

Here A, is the filter width in the spanwise direction and
I*(zt) = 1 — exp[—(z+ /A)*] with A = 25. To both v and vy is added v.
Figures 11 and 12 show a comparison of the computed streamwise mean
velocity (normalized by u.) and the experimental NR data for the 32% and 643
grids respectively. It was found that in order to obtain correct mean velocity
profiles C was set to 0.14 and 0.17 for the 32° and 64° grids respectively
although other combinations may give equally good results. C* was set to 0.013
for both grids. Thus indicating that the mean shear component in the standard
Smagorinsky model can have a significant damping effect when relatively
course grids are used. Also, a correct mean velocity profile could only be
obtained for the 323 grid by ensuring that the first velocity point fell onto the
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Figure 10.
Comparison of rms
between computational
solutions and
experimental results for
box size 6 x 0.5 x 1
with 32 x 32 x 32 grid
using Mason’s function
power 1
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Figure 11.
Comparison of mean
velocity in streamwise
direction between
computational solution
and experimental result
for box size 6 x 4 x 1
with 32 x 32 x 32 grid
using Schumann’s split

SGM

Figure 12.
Comparison of mean
velocity in streamwise
direction between
computational solution
and experimental result
for box size 6 x 4 x 1
with 64 x 64 x 64 grid
using Schumann’s split
SGM
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log-law rather than onto its buffer region value. This was due to the fact that
alteration of the coefficients was not able to produce a log-law line with a
sufficiently large enough constant of integration — i.e. the correct slope was
produced but the line always fell significantly below its correct value.

Figures 13 and 14 show the computed turbulent rms values normalized by
u, for the streamwise, spanwise and vertical directions compared to the
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Figure 13.
Comparison of rms
between computational
solutions and
experimental results for
box size 6 x 4 x 1 with
32 x 32 x 32 grid using
Schumann’s split SGM

Figure 14.
Comparison of rms
between computational
solutions and
experimental results for
box size 6 x 4 x 1 with
64 x 64 x 64 grid using
Schumann’s split SGM
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experimental results. These are shown for the two grids (32° and 64°) used in
the last section. It can be seen that the vertical rms agree reasonably well with
the measured data. However, greater differences are evident between the
numerical and measured streamwise and lateral rms values, particularly near
the wall.

8. Conclusions

The use of regular relatively large mesh sizes near wall boundaries has the
advantages that less computational points are required and explicit time steps
can be larger than would be the case if smaller ones were used. The
disadvantages are, however, that the dynamics of the flow in the buffer region
are not fully resolved and the simulation can be significantly effected by
numerical errors. It is the difficulty in quantifying these errors that prevents
any analytical treatment to determine length scales or damping functions. The
simulations reported in this paper show that there is no universal valve of C;
which satisfies all of the range of mesh scales, A, for the Smagorinsky subgrid
model. In this paper, a length scale function based on Mason’s matching
function but with a varied power is introduced. The simulations show that
when a coarse resolution is utilized (i.e. when the streaks near the bed are not
sufficiently resolved), then » has to be “tuned” to give reasonable results. A
similar situation arises with the use of Schumann’s split SGM in which either
the mean or turbulent coefficient is set and the other has to be adjusted to
reproduce a correct mean velocity profile. For very coarse simulations where
the first velocity point occurs well into the buffer region, then only by ensuring
that the point falls onto the log-law can accurate mean profiles be obtained.
Good LES simulations can, however, be obtained by paying special attention to
the lateral resolution and a value Ay™ < 20 is suggested.

References

Deardorff, J.W. (1970), “A numerical study of three-dimensional turbulent channel flow at large
Reynolds numbers”, J. Fluid Mech, Vol. 41, pp. 453-80.

Germano, M., Piomell, U., Moin, P. and Cabot, W. (1991), “A dynamic subgrid-scale eddy-
viscosity model”, Phs. Fluids A., Vol. 3No. 7, pp. 1760-5.

Ghosal, S., Carati, D. and Moin, P. (1994), Test of the Dynamic Localization Model on Isotropic
Turbulence, Center for Turbulence Research, Stanford University, Stanford, CA.

Ghosal, S., Lund, T.S. and Moin, P. (1992), A Dynamic Localization Model for Large-Eddy
Sitmulation of Turbulent Flows, Center for Turbulence Research, Stanford University,
Stanford, CA.

Mason, P.J. and Thomson, DJ. (1992), “Stochastic backscatter in large-eddy simulations of
boundary layers”, J. Fluid Mech., Vol. 242, pp. 51-78.

Moin, P. and Kim, J. (1982), “Numerical investigation of turbulent channel flow”, J. Fluid Mech.,
Vol. 118, pp. 341-77.

Moin, P., Squires, K., Cabot, W. and Lee, S. (1991), “A dynamic subgrid model for compressible
turbulence and scalar transport”, Phys. Fluids A., Vol. 3, pp. 2746-57.

Nezu, I. and Rodi, W. (1994), “Open-channel flow measurements with a laser doppler
anemometer”, J. Hydraulic Eng., ASCE, Vol. 112, pp. 335-55.



Schumann, U. (1975), “Subgrid-scale model for finite difference simulations of turbulent flows”, Cogrse resolution

Plane Channels and Annul, J. Comp. Phys., Vol. 18, pp. 376-404.

Smagorinsky, J. (1963), “General circulation experiments with the primitive equations. 1. The
basic experiment”, Mon. Weather Rev., Vol. 91, pp. 99-164.

Thomas, T.G., Leslie, D.C. and Williams, J.JR. (1995), “Free surface simulations using a
conservative 3D code”, J. Comp. Phys., Vol. 116, pp. 52-68.

Thomas, T.G. and Williams, J.JR. (1994), “The numerical simulation of laminar free-surface
flows”, J. Hydraulic Res., Vol. 32 No. 4.

Thomas, T.G. and Williams, JJ.R. (1995), “Turbulent simulation of open channel flow at low
Reynolds number”, Int. J. Heat Mass Transfer., Vol. 38 No. 2, pp. 259-66.

Van Driest, E.R. (1956), “On turbulent flow near a wall”, J. Aero. Sci., Vol. 23, pp. 1007-11.

large-eddy
simulation

35




